Strongly Incremental Repair Detection
نویسندگان
چکیده
We present STIR (STrongly Incremental Repair detection), a system that detects speech repairs and edit terms on transcripts incrementally with minimal latency. STIR uses information-theoretic measures from n-gram models as its principal decision features in a pipeline of classifiers detecting the different stages of repairs. Results on the Switchboard disfluency tagged corpus show utterance-final accuracy on a par with state-of-the-art incremental repair detection methods, but with better incremental accuracy, faster time-to-detection and less computational overhead. We evaluate its performance using incremental metrics and propose new repair processing evaluation standards.
منابع مشابه
A Hybrid Framework for Building an Efficient Incremental Intrusion Detection System
In this paper, a boosting-based incremental hybrid intrusion detection system is introduced. This system combines incremental misuse detection and incremental anomaly detection. We use boosting ensemble of weak classifiers to implement misuse intrusion detection system. It can identify new classes types of intrusions that do not exist in the training dataset for incremental misuse detection. As...
متن کاملDynamic anomaly detection by using incremental approximate PCA in AODV-based MANETs
Mobile Ad-hoc Networks (MANETs) by contrast of other networks have more vulnerability because of having nature properties such as dynamic topology and no infrastructure. Therefore, a considerable challenge for these networks, is a method expansion that to be able to specify anomalies with high accuracy at network dynamic topology alternation. In this paper, two methods proposed for dynamic anom...
متن کاملRecurrent neural networks for incremental disfluency detection
For dialogue systems to become robust, they must be able to detect disfluencies accurately and with minimal latency. To meet this challenge, here we frame incremental disfluency detection as a word-by-word tagging task and, following their recent success in Spoken Language Understanding tasks, we test the performance of Recurrent Neural Networks (RNNs). We experiment with different inputs for R...
متن کاملTime Series Data Cleaning: From Anomaly Detection to Anomaly Repairing
Errors are prevalent in time series data, such as GPS trajectories or sensor readings. Existing methods focus more on anomaly detection but not on repairing the detected anomalies. By simply filtering out the dirty data via anomaly detection, applications could still be unreliable over the incomplete time series. Instead of simply discarding anomalies, we propose to (iteratively) repair them in...
متن کاملModelling Expectation in the Self-Repair Processing of Annotat-, um, Listeners
This paper describes a statistical corpus study of self-repairs in the disfluencyannotated Switchboard corpus which examines the time-linear nature of self-repair processing for annotators and listeners in dialogue. The study suggests a strictly local detection and processing mechanism for self-repairs is sufficient, an advantage currently not used effectively under the bonnet of state-of-the-a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014